- Soc., 96, 7998 (1974).
- (5) S. Rosenberg, S. M. Silver, J. M. Sayer, and W. P. Jencks, J. Am. Chem. Soc., 96, 7986 (1974).

(6) W. R. Abrams and R. G. Kallen, J. Am. Chem. Soc., 98, 7777 (1976); J. M. Sayer and C. Edman, Ibid., 101, 3010 (1979).

- (7) Equation 1 is taken from ref 4 and does not include the spectator mechanism.6 The formulation provided is adequate to account for all results presented herein.
- (8) P. Sojo, F. Vilorla, L. Malave, R. Possomai, M. Caldazilla, J. Baumrucker, A. Malpica, R. Moscovici, and L. do Amaral, J. Am. Chem. Soc., 98, 4519 (1976)

- (1876).
 (9) E. Felder and D. Pitre, *Gazz. Chim. Ital.*, **86**, 386 (1956).
 (10) J. C. Cralg and K. K. Purushothaman, *J. Org. Chem.*, **35**, 1721 (1970).
 (11) W. Mathes and W. Sauermilch, *Justus Liebigs Ann. Chem.*, **618**, 152 (1958).
- (12) W. P. Jencks, J. Am. Chem. Soc., 81, 475 (1959).
 (13) E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc., 84, 4319 (1962).
- (14) L. do Amaral, W. A. Sandstrom, and E. H. Cordes, J. Am. Chem. Soc., 88, 2225 (1966).
- M. Sayer and W. P. Jencks, *J. Am. Chem. Soc.*, **91**, 6353 (1969).
 R. Moscovici, J. P. Ferraz, E. A. Neves, J. O. Tognoll, M. A. El. Seoud, and L. do Amaral, *J. Org. Chem.*, **41**, 4093 (1976).
 W. P. Jencks and J. Rogenstein in "Handbook of Biochemistry", H. A. Sober,
- Ed., Chemical Rubber Publishing Co., Cleveland, 1968.
 (18) L. do Amaral and M. P. Bastos, *J. Org. Chem.*, 36, 3412 (1971).
 (19) E. Sander and W. P. Jencks. *J. Am. Chem. Soc.*, 90, 6154 (1968).

- (20) S. Cabani, P. Glanni, and E. Matteoli, J. Phys. Chem., 76, 2959 (1972).
- (21) L. do Amaral, unpublished observations.
- (22) L. do Amaral, M. P. Bastos, H. G. Bull, and E. H. Cordes, J. Am. Chem. Soc., 95, 7369 (1973).

Photochemical and Thermal Rearrangements of Protonated 2,3-Homotropones

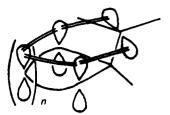
Ronald F. Childs* and Carol V. Rogerson

Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada. Received November 6, 1979

Abstract: The 2-hydroxyhomotropylium cation 10 and 8-endo-methyl-, 8-exo-methyl-, 8,8-dimethyl-, 1,8,8-trimethyl-, and 3,8,8-trimethyl-2-hydroxyhomotropylium cations, 12, 11, 13, 14, and 15, respectively, were prepared by protonation of the corresponding 2,3-homotropones in FSO₃H. On the basis of a comparison of the ¹H NMR spectra of the 2-hydroxyhomotropylium ions with nonaromatic systems it is concluded that they can properly be regarded as homoaromatic cations. Ions 10, 11, 12, and 13 isomerized when irradiated in FSO₃H to give the corresponding 1-hydroxyhomotropylium cations 19, 21, 22, and 23, respectively. The thermal isomerization of these ions has been investigated. Cation 22 was shown to isomerize to 21 at -39.5 °C ($k = 4.3 \times 10^{-4}$ s⁻¹). An equilibrium was set up between these two ions consisting of 6% 22 and 94% 21 at 0 °C. At higher temperatures 21 rearranged to protonated 1-phenylpropanal ($k = 2.5 \times 10^{-4} \, \mathrm{s}^{-1}$ at 37 °C). The 8,8-dimethyl cation 23 isomerized back to 13 ($k = 3.1 \times 10^{-4} \, \mathrm{s}^{-1}$ at $-23 \, ^{\circ}\mathrm{C}$), which underwent a further series of rearrangements to give eventually protonated 8,8-dimethylbicyclo[3.1.0]octa-3,6-dien-2-one (29). The symmetrical 8,8-dimethyl-4-hydroxyhomotropylium cation 32 was observed as an intermediate in the isomerization of 13 to 29. On the basis of the thermal isomerizations of 14 and 15 it was concluded that the 8,8-dimethyl-3-hydroxyhomotropylium cation must also be an intermediate in the conversions of 13 to 29 and 13 to 32.

The purpose of this study was to see whether circumambulatory rearrangements could be detected with homotropylium cations, eq 1. Interest in these potential migrations stems from

the observation of facile, highly stereoselective, cyclopropyl merrry-go-round reactions of the bicyclo[3.1.0] hexenyl cations, eq 2.2 The characterization of such rearrangements with 1 would be of value in assessing the importance of homoaromaticity and orbital symmetry in the two systems.


Circumambulatory isomerizations of the bicyclo[3.1.0]hexenyl cations readily occur. The measured barrier to isomerization of 2 is only 15 kcal/mol^{2b} and substituted derivatives of 2 exhibit activation energies which can range down to values which are formally below zero.^{2,3}

At the outset of this work, no circumambulatory rearrangements of 1 or its derivatives had been detected. Berson and co-workers4 had examined deuterated derivatives of the parent cation and concluded that the barrier to such a migration must be greater than 26-27 kcal/mol, a limit set by the onset of rapid decomposition of 1. Calculations performed by Hehre⁵ suggested that the barrier to migration would be of the order of 40 kcal/mol. Since our preliminary communication of these results6 Scott and Brunsvold7 have observed a circumambulatory rearrangement with a ring-fused homotro-

Why should the degenerate rearrangements of 1 have such a larger activation energy than those of 2? Two primary reasons can be suggested: the constraints put on the system by the dictates of orbital symmetry⁸ and the greater homoaromatic stabilization of the ground state of 1 as compared to 2.

The importance of both factors can readily be seen by comparing the relative stabilities of the ground and formal transition states shown for the migrations in eq 1 and 2. For a concerted migration there are two possible geometries of the transition state and these are not equally attractive. The bisected structure which involves inversion at the migrating carbon can be readily attained from either 1 or 2. The formation of the alternative eclipsed structure involves a more difficult non-least-motion movement of the migrating carbon.9 For orbital symmetry to be conserved in thermally induced migrations, 1 is required to rearrange by the higher energy eclipsed transition state, whereas 2 can isomerize by the least motion allowed bisected pathway. On the other hand, homoaromatic stabilization of 1 will have the effect of increasing the energy gap between the ground state of 1 and the transition state for migration as compared to the comparable ground and transition states of the nonaromatic 2.1,10

eclipsed transition state non-least motion

bisected transition state least motion

In this paper we explore two ways of minimizing these adverse factors to the circumambulatory rearrangements of 1. The orbital symmetry imposed constraint can in principle be removed in the first excited state and we indeed show this to be the case. Secondly, by placing electron-donating substituents at C_8 of 1 the activation energy for the migration can be reduced, allowing thermally induced migrations to occur.⁵

Results and Discussion

The parent homotropylium cation 1 has been shown to rearrange on irradiation to give a bicyclo[3.3.0]octadienyl cation. ¹¹ If any degenerate isomerizations of 1 had occurred under these conditions, they would not have been detected. In order to provide a ring marker we chose to work with the 2-hydroxyhomotropylium cations which can be obtained on protonation of 2,3-homotropones. ¹²

Preparation of Homotropones. Ketones 3-5 were prepared by the procedure of Franck-Neumann.¹³ The *exo*-methyl compound 4 as prepared by this method contained some of the corresponding *endo*-methyl isomer 6 (10-20%). The addition of diazoethane to tropone itself gave in our hands a mixture of 8-methylcyclooctatrienone (7, \sim 60%), 6, and 4,¹⁴ which

$$R_1$$
 R_2
 CH_3

3, $R_1 = R_2 = H$
7

4, $R_1 = H$; $R_2 = CH_3$
5, $R_1 = R_2 = CH_3$
6, $R_1 = CH_3$; $R_2 = H$

eventually yielded a mixture containing 6 (80-90%) and 4 (10-20%).

The two homotropones 8 and 9 were prepated from 2-methyltroponeiron tricarbonyl 15 as indicated in eq 3.

$$\begin{array}{c|c}
 & 1. (CH_3)_2CN_2 \\
\hline
 & 2. \Delta \\
 & 3. (CH_3)_3NO
\end{array}$$

$$\begin{array}{c}
 & 8 \\
 & + \\
 & O
\end{array}$$
(3)

Protonation of Homotropones. Dissolution of the homotropones 3–6, 8, and 9 at low temperature in FSO_3H gave the corresponding 2-hydroxyhomotropylium cations 10–15. The 1H NMR spectra of all the cations were in agreement with the assigned structures (Table I) or in the case of 10 with that previously reported. 12

Cations 10-12 were all found to be thermally stable at room temperature. No evidence for the interconversion of the exo-

10,
$$R_1 = R_2 = H$$

11, $R_1 = H$; $R_2 = CH_3$
12, $R_1 = CH_3$; $R_2 = H$

14,
$$R_1 = CH_3$$
; $R_2 = H$
15, $R_1 = H$; $R_2 = CH_3$

13, $R_1 = R_2 = CH_3$

and endo-methyl isomers 11 and 12 could be detected up to 80 °C, at which temperature both cations underwent general decomposition. Knowing the rate of decomposition it was possible to put an upper limit on the rate of conversion of 12 \rightarrow 11, $k < 2 \times 10^{-4}$ s⁻¹ at 83 °C ($\Delta G^{\ddagger} > 27$ kcal/mol).

Before proceeding further it is necessary to address the question of the degree of homoaromaticity in these protonated homotropones. Although in the past they have been regarded as homoaromatic systems, 1,14 it could be argued that most of the positive charge is localized on the oxygen atom and cyclic delocalization is unimportant. The usual test of cyclic delocalization in homoaromatic systems has been the magnitude of the chemical-shift difference of resonances of the exo and endo substituents on the bridging carbon in the NMR spectrum of a system. The recent paper of Haddon¹⁶ which links the ring current to the resonance energy of an aromatic system has strengthened the use of this criterion. The chemical-shift difference of the C₈ substituent resonances of a range of homotropylium species are presented in Table II. As can be seen, this chemical-shift difference is attenuated by about a factor of 2 on introduction of the hydroxy group onto C2 of the homotropylium cation ($\Delta \delta = 5.86$ for 1 compared to 3.1 for 10). Nevertheless, a chemical-shift difference between the exo and endo protons of 10 of 3.1 ppm is still appreciable.

Some idea of the difference to be expected in these systems in the absence of cyclic delocalization can be gained from a consideration of the corresponding iron tricarbonyl complexes. Cyclic delocalization in 16 is prevented by the iron tricarbonyl

function and the chemical-shift difference has been shown to be very small. ^1.17 Similarly, we find that there is no difference in the chemical shifts of the C_8 methylene proton resonances of the O-protonated iron tricarbonyl complex of 2,3-homotropone 17. A comparable pattern of shifts exists for the C_8 substituted systems, e.g., 13 and 18.18

Overall it would appear that the hydroxy group on C_2 of a homotropylium cation reduces but by no means eliminates cyclic delocalization. Protonated 2,3-homotropones may be classified as homoaromatic cations.

Photoisomerizations. Protonated 2,3-homotropones exhibit intense long-wavelength absorptions at ca. 360 nm (Table III). Irradiation of FSO₃H solutions of these cations at low temperature with broad-spectrum light led to the formation of complex mixtures of products. However, much cleaner photoreactions were observed when longer wavelength light was used ($\lambda > 360$ nm).

In the case of 10 the photoproduct was identified as 19 by the similarity of its ¹H NMR spectrum to that previously reported.²⁰ Cyclooctatrienone was recovered when the irradiated solutions were quenched with aqueous base.

Table I. 1H NMR Spectral Data

		chemical shifts, ppm								
compd	solvent	H ₁	H ₂	Н3	H ₄	H ₅	H ₆	H ₇	H _{8-exo}	H _{8-endo}
6	CS ₂	2.30 m		5.91 d	6.30 m	6.00 t	6.3 m	1.96 m	1.96 m	(1.02 d)
12	FSO_3H	3.55 m		7.03 m	7.78 dd	7.03 m	7.50 dd	3.55 m	4.12 m	(0.52 d)
11	FSO ₃ H	3.40 m		7.00 m	7.68 dd	7.00 m	7.65 dd	3.65 m	(1.69 d)	0.99 m
21	FSO ₃ H		7,44 m	8.02 m	7.44 m	8.02 m	7.44 m	5.60	(1.78 d)	1.29 dq
22	FSO ₃ H				7.2-8.4 m -			6.08 t	5.15 m	(0.22 d)
5	CS_2	2.06 d		5.90 d	6.22 q	5.78 t	6.40 q	1.60 t	$(1.03 \text{ s})^a$	$(1.36 \text{ s})^a$
13	FSŌ₃H	3.23 d		7.10 d	7.67 q	6.99 t	7.52 q	3.42 t	(1.92 s)	(0.68 s)
23	FSO ₃ H			 7	.25-8.35 m -	 		5.53 d	(2.10 s)	(0.15 s)
30	CS_2	2.66 m		5.30 ddd	6.94 dd	2.66 m	6.50 dd	5.83 dd	(1.20 s)	(1.20 s)
29	FSO ₃ H	3.63 m		6.57 dd	8.78 dd	3.63 m	7.22 t	6.48 dd	(1.42 s)	(1.54 s)
33	CS_2	1.63 dd	6.30 m	5.85 d		5.85 d	6.30 m	1.63 dd	$(1.32 \text{ s})^a$	$(0.83 \text{ s})^a$
32	FSO ₃ H	3.33 d	8.00 bt	7.11 d		7.11 d	8.00 bt	3.33 d	(2.03 s)	(0.41 s)
8	CS_2	$(1.13 \text{ s})^a$			5.6-6.45 m -			1.24 d	$(0.91 \text{ s})^a$	$(1.24 s)^a$
9	CS_2	2.25 d						1.62 t	$(1.03 \text{ s})^a$	$(1.38 \text{ s})^a$
14	FSO ₃ H	(1.71 s)			.00-7.60 m -			3.35 d	(1.98 s)	(0.35 s)
15	FSO ₃ H			(1.82 s)	7.72 d	6.80 t	7.20 t	3.45 t	(2.27 s)	(0.53 s)
34	FSO ₃ H	3.39 m	7.92 d	(1.95 s)		7.04 d	7.92 m	3.39 m	(2.36 s)	(0.23 s)
37	CS_2	2.73 dd		(1.56 d)	6.66 dq	2.60 dd	6.55 dd	5.90 dd	(1.16 s)	(1.20 s)
38	CS_2	$(1.13 \text{ s})^a$		5.40 d	6.97 dd	2.67 dd	5.60 dd	5.50 dd	$(1.04 \text{ s})^a$	$(0.97 \text{ s})^a$
35	FSO ₃ H	3.63 d		(2.00 s)	8.50 dd	3.50 m	7.23 t	6.50 t	$(1.35 \text{ s})^a$	$(1.48 \text{ s})^a$
36		$(1.27 \text{ s})^a$		6.50 d	8.78 dd	3.55 m	7.23 m	6.11 d	$(1.40 \text{ s})^a$	$(1.43)^{a}$

	coupling constants, Hz									
compd	$J_{1,2}$	J_{17}	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6}$	$J_{6,7}$	J_{18}	J_{CH_3H}	other
6				12	8				5	
12				12	8	11	6		6	
11				12	8	11	6		6	
21							9	9	7	
22							9	9	7	
5		9				11	7			
13		8		11	10	10	7			
23							10			
30		3.3		9.6	6.5	3.2	5.9			$0.8, 1.0^{b}$
29		2		10	6.5	2	4			
33	5		12							3 c
32	8		11							
8							7			
9		8					8			
14							7.5			
15		7			9	7	7			
34						10				
37		3			7	4	6		2	
38				9	6	3	5			
35		3.5			6.5	4	4			
36				10	7	4	5			

All chemical shifts referred to tetramethylsilane (CS₂ solvent) or internal CH₂Cl₂ taken as δ 5.3 (FSO₃H solvent). Chemical shifts of methyl resonances in parentheses. s, singlet; d, doublet; t, triplet; m, multiplet. ^a Assignment may be reversed. ^b $J_{3,5}$ and $J_{1,3}$. ^c $J_{2,7} = J_{1,7}$.

Table II. Differences in ¹H Chemical Shifts of the Exo and Endo Substituent Resonances

cation	$\Delta \delta$, ppm a	cation	$\Delta \delta$, ppm a		
10	3.10	16	0.18		
17	0.00	13	1.24		
1	5.86	18	0.16		

 a $\Delta\delta=\delta_{\rm exo}-\delta_{\rm endo}$ for C_8 methylene proton resonances or, in the cases of 13 and 18, methyl resonances.

Irradiation of 11 led to a similar photoreaction to that found for 10. The product was identified as 21 on the basis of its similarity to 19 and by its independent generation on proton-

Table III. UV Spectra of Cations^a

cation	λ _{max} , nm	$\log\epsilon$		
10	362	3.34		
11	355	3.56		
19	350	3.74		
21	345	3.48		

^a All spectra obtained in H₂SO₄ at room temperature.

ation of 7. The assignment of the C_8 -methyl group to the exo position was made on the basis of the C_8 methine and methyl proton resonances, particularly when compared to those of the corresponding *endo*-methyl cation.

Similar irradiations of FSO_3H solutions of 12 (containing some 11) at -70 °C led to the formation of 21 and a new cation. This new cation had a ¹H NMR spectrum which was comparable to that of 21, except for the positions of the C_8 methyl and methine proton resonances (Table 1). The high-field position of the methyl group resonance and low-field position of the C_8 methine proton strongly suggest that this

cation has the structure indicated by 22. At temperatures above -50 °C 22 isomerizes rapidly to 21. Endo- C_8 -substituted homotropylium cations are known to be thermodynamically less stable than the corresponding exo isomers and the occurrence of such an endo \rightarrow exo isomerization is well precedented. 1.21,22

A single product was obtained on irradiation of 13 which was identified as 23 on the basis of its ¹H NMR spectrum. In this case it was not possible to generate 23 independently by protonation of the corresponding cyclooctatrienone 24. This ketone exists very largely as its bicyclic valence tautomer 25, ¹⁷ and 26 was produced on protonation of 25 in FSO₃H at very low temperatures.

Stereoselectivity of Photoisomerization. The photochemical isomerization of 2-hydroxyhomotropylium to 1-hydroxyhomotropylium cations described above can best be understood in terms of a circumambulatory rearrangement of the bridging C₈ carbon around the "seven-membered" ring. Alternative possibilities involving photoinduced hydride or methyl shifts cannot readily account for these isomerizations. Formally this circumambulation can be considered to involve a [1.6]-sigmatropic shift of a hydroxybicyclo[5.1.0]octadienyl cation and

in this regard it was of interest to determine the stereoselectivities of these photodriven circumambulations.

With the monomethyl substituted systems, the conversion of 11 to 21 is not particularly informative about the stereoselectivity of this type of conversion as both cations are the thermodynamically preferred isomers.²² The same is not true

Table IV. Irradiation of 12 at -70 °C

	composition, %a				
	12	22	11	21	
initial	79	0	21	0	
after 4.5 h $h\nu$	48	26	12	14	
corrected for thermal reaction	48	29	12	11	
expected for completely stereoselective reaction	48	31	12	9	

^a Error $\mp 1\%$.

of the photoisomerization of 12 to 22. Analysis of the stereoselectivity of this rearrangement was complicated by the thermal instability of the product 22, even at -70 °C, the limiting temperature of our photochemical equipment, and by the presence of 11 as an impurity which underwent photoisomerization to give 21 during the course of the experiment. To correct for the first factor, the rate of isomerization of 22 to 21 was measured at $-70 \,^{\circ}\text{C}$ ($k = 2 \times 10^{-5} \,^{\circ}\text{J}$ at $-70 \,^{\circ}\text{C}$). The photoisomerization of 12 was repeated at -70 °C and the composition of the solutions carefully determined by NMR spectroscopy (Table IV). After allowing for the thermal isomerization of 22 to 21, the corrected composition of the final solution is shown in line 3 of Table IV. If the isomerization of 12 to 22 occurred with no loss of steric integrity at C₈, then the amount of 22 present after irradiation should correspond to the drop in concentration of 12 (Table IV, line 4). Thus the final solution should contain 31% of 22 but as is shown only 29% of 22 was produced, indicating that the photoisomerization of 12 to 22 occurred with a 94% stereoselectivity.

It is thus clear that this circumambulatory rearrangement of hydroxyhomotropylium cations occurs with inversion of configuration at C_8 , the migrating center, which gives an overall retention of stereochemistry at C_8 . In other words, this photoinduced rearrangement proceeds very largely by the "bisected" transition state just as is preferred by orbital symmetry and least motion considerations.

In passing it is of interest that Paquette and Cox²³ have reported that the parent homotropone 3 undergoes photoisomerization to give cyclooctatrienone among other products.

Thermal Isomerizations. During the course of this work a variety of thermal isomerizations of these hydroxyhomotropylium cations were encountered. One which has been referred to already is the isomerization of the endo-methyl-1-hydroxy cation 22 to the corresponding exo isomer. The rate constant for this reaction was measured at -39.5 °C and found to be $4.3 \times 10^{-4} \, \mathrm{s^{-1}} \, (\Delta G^{\ddagger} = 17.1 \, \mathrm{kcal/mol})$. The much lower barrier to inversion of 22 as compared to that of the parent homotropylium cation 1 ($\Delta G^{\ddagger} = 22.3 \, \mathrm{kcal/mol})^{24}$ or the corresponding conversion of $12 \rightarrow 11 \, (\Delta G^{\ddagger} > 27 \, \mathrm{kcal/mol})$ can most reasonably be attributed to the stabilization of the planar cyclooctatrienyl cation transition state for the ring inversion process. The barrier to inversion of 22 to 21 is similar to that reported by Brookhart and Atwater for the 1-methoxyhomotropylium cation.²¹

The conversion of 22 to 21 did not proceed to completion but an equilibrium was set up between the two cations consisting of 6% 22 and 94% 21 at 0 °C. At 0 °C, the difference in energy between 22 and 21 is only 1.48 kcal/mol, which represents a much smaller energy difference than has been reported for other C₈ monosubstituted homotropylium cations.²² Careful examination of the solution obtained on protonation of 7 in FSO₃H showed that a mixture of the same composition was formed.

At room temperature and above, 21 rearranged to give protonated propiophenone (27) ($k = 2.5 \times 10^{-4} \, \text{s}^{-1}$, $\Delta G^{\ddagger} = 23.2 \, \text{kcal/mol}$ at 37 °C). The product 27 was identified by its ¹H NMR spectrum and its independent generation by protonation of propiophenone (28).

A much more complicated series of isomerizations took

place with the C_8 -dimethyl substituted systems. In the first place, cation 23 was found to isomerize back to 13 when heated to temperatures exceeding -30 °C ($k=3.1\times10^{-4}\,\mathrm{s^{-1}}$ at -23 °C). At somewhat higher temperatures 13 underwent a further series of reactions to give eventually a new cation 29. Neutralization of the FSO₃H after this rearrangement had occurred led to the recovery of 30 in high yield.

The structure of 30 was suggested by its spectroscopic properties.³⁰ Confirmation of this structure was made by catalytic reduction of 30 to the known ketone 31.²⁵ An authentic sample of 31 was prepared from fenchocamphorone by the route shown in Scheme I and found to be identical with that obtained by reduction of 30.

Examination of the ¹H NMR spectra obtained during the course of the rearrangement of 13 to 29 showed that another species was present. This cation grew to a maximum concentration of 16% and subsequently decayed to 29 (Figure 1). Using spectral subtraction techniques it proved possible to obtain the ¹H NMR spectrum of this intermediate. The isomerization of 13 was stopped after about 1 half-life and on neutralization of the acid solution three ketones were obtained which were identified as 5, 30, and 33. The properties of 33 were entirely consistent with the symmetrical homotropone and 32 was regenerated on its protonation in FSO₃H. This cation had an identical spectrum with that obtained by the subtraction techniques. The cation 32 isomerized to 29 on warming to -16 °C. No 13 was detected during this isomerization. ¹⁹

To gain further insight into the mechanism of these isomerizations, the rearrangements of the methyl-substituted cations 14 and 15 were examined. Cation 14 was prepared in an

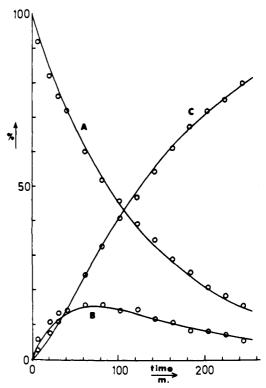


Figure 1. Rate of isomerization of 13. Open circles (O), experimental data; solid lines, calculated concentrations. Curve A, decay of 13; curve B, intermediate cation 32; curve C, final product 29.

FSO₃H/SO₂ mixture and found to be stable at temperatures below -70 °C. On warming the solution to -50 °C for 1.5 h, 14 completely rearranged to a mixture of two ions which were identified as 34 (57%) and 35 (43%). Both 34 and 35 were stable at -50 °C; however, at higher temperatures 34 rearranged to give 35 and a small amount of an additional cation, 36. The final composition of the solution obtained after 12 min at 0 °C was 35 (84%) and 36 (16%).

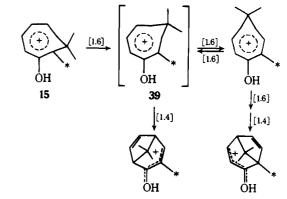
Neutralization of the acid solution of 35 and 36 gave the two ketones 37 and 38, which were separated and characterized.

The properties of these ketones were very similar to that of 30. The positions of the additional methyl groups were readily assigned on the basis of their ¹H NMR spectra (Table I). Protonation of 37 and 38 in FSO₃H gave 35 and 36, respectively, the NMR spectra of which confirmed the structural assignments.

The structure of 34 is based upon its ¹H NMR spectrum (Table I), which was obtained by a series of spectral subtractions. The ¹H NMR spectra of 34 is very similar to that of 32, differing in the replacement of a vinyl-proton resonance by a methyl-group signal.

FSO₃H solutions of 35 and 36 were stable at 0 °C for the time periods involved in the isomerization of 14. When left for longer times, further isomerizations of these cations were observed in their ¹H NMR spectra. However, there was no detectable interconversion of the two ions. As a result, it must be concluded that 36 comes from rearrangement of 34 and not directly from 14. Examination of the composition of the solutions at the two stages of the rearrangement indicates that 34 rearranges to give 35 (72%) and 36 (28%).

The isomerization of 15 proceeded more slowly than that of 14. After 30 min at -20 °C, only some 30% of 15 had rearranged. The same products were observed as were obtained from 14 but in different proportions. The higher temperatures required for the rearrangement of 15 meant that 34 was thermally labile and this product only built up to a 10% level during the reaction. On keeping the FSO₃H solution of 15 at 0 °C for 45 min, a 1:1 mixture of 35 and 36 was obtained.


$$\frac{\Delta}{0 \text{ °C}} + 35 + 36$$
OH
15

These isomerizations of 14 and 15 provided information about the mechanism of the rearrangements of 8,8-dimethyl substituted homotropones. The thermal stability of 34 at -50 °C, at which temperature 35 is produced from 14, rules out the possibility that 34 is an intermediate in the conversion of 14 to 35. That is, the protonated 4,5-homotropones observed in the rearrangments of the protonated 2,3-homotropones do not lie on the direct pathway between the latter cations and the protonated bicyclo[3.2.1]octadienones. The results obtained with 14 and 15 also rule out the possibility that the protonated bicyclo[3.2.1]octadienones are produced directly from the protonated 2,3-homotropones by what could be regarded as a [1.3]-sigmatropic shift process. Such a pathway would require that 14 isomerize to give 36 at -50 °C and not 35 as has been observed.

The simplest scheme which can account for the observed transformations is shown in Scheme II. (For brevity in this scheme the various resonance forms of the protonated homotropones have not been shown; however, the rearrangements can be thought of as proceeding via the bicyclo[5.1.0] octadienyl-type structures.) A 3-hydroxyhomotropylium cation is suggested as a key intermediate. This cation could either rearrange to give the protonated 4,5-homotropone or undergo a [1.4]-sigmatropic shift to give the bicyclooctadienones. Such a scheme fully accounts for the observations made with the methyl-labeled ions 14 and 15.

The rate constants of the isomerizations of 13 were evaluated

Scheme II

Scheme III

Theme III

32
$$k_{2} = 1.2 \times 10^{-3} \text{ s}^{-1}$$

$$\Delta G^{\ddagger} = 18.3 \text{ kcal/mol}$$

13
$$\frac{k_{1} = 1.3 \times 10^{-4} \text{ s}^{-1}}{\Delta G^{\ddagger} = 19.5 \text{ kcal/mol}}$$

OH

40
$$k_{4}$$
29

all reactions at -16 °C $k_2/k_4 = 2.5$ $k_2/k_3 > 100$

using a kinetics simulation program²⁶ and matching the observed and calculated time/concentration plots (Figure 1). For this approach it was necessary to assume a mechanistic scheme and one directly comparable to that shown in Scheme II was used. As a result, the rate constants presented here differ from those given in our preliminary publication where the straightforward isomerization path of $13 \rightarrow 32 \rightarrow 29$ was used as a basis for the simulation. It was not possible to evaluate the exact magnitude of the two fast rate constants $(k_2 \text{ and } k_4)$ but only their relative magnitudes. The results obtained by this approach are shown in Scheme III.

The reactions described above of the 8,8-dimethyl substituted homotropylium cations provide several examples of thermally initiated circumambulatory rearrangements (e.g., $23 \rightarrow 13 \rightarrow 40 \rightarrow 32$). It has been tacitly assumed in the previous discussion that these arrangements involve a single-step [1.6]-sigmatropic shift of C₈ around the periphery of the cycloheptadienyl resonance form of the homotropylium species. There are alternative multistep pathways possible which involve the stepwise movement of the cyclopropane; however, many of these are ruled out by the observed stability of the bicyclo[3.2.1] octadienyl systems. For example, the conversion of 13 to 32, which could formally proceed by successive [1.3] shifts, is ruled out by the stability of 29. Rather it would appear that these circumambulatory rearrangements proceed via the single-step migration of C₈ around the "seven-membered ring" in a [1.6]-sigmatropic shift. Just as the calculation of Hehre indicated, these circumambulatory shifts in homotropylium cations become energetically possible when C₈ bears chargestabilizing groups.⁵ Indeed the activation energies associated with these shifts are not far removed from the 13 kcal/mol figure estimated by Hehre.

The importance of substitution at C₈ for these circumam-

bulatory rearrangements can be seen by comparing the barrier to circumambulation of $23 \rightarrow 13$ with that of $21 \rightarrow 11$. Cation 21 was observed to isomerize to 27 with a rate constant of 2.5 \times 10⁻⁴ s⁻ at 37 °C. No 11 was detected during the course of this reaction even though 11 is known to be stable under these conditions. As the formation of 5% of 11 could be detected the rate of isomerization of 21 \rightarrow 11 must be less than 1.25 \times 10⁻⁵ s⁻¹ at 37 °C, $\Delta G^{\pm} > 25.0$ kcal/mol. This ΔG^{\pm} should be compared to the comparable isomerization of 23 to 13 (ΔG^{\pm} = 18.5 kcal/mol). The difference in free energy of 6.5 kcal/mol represents the minimum energy difference for the circumambulatory migration of C₈ with one and two methyl groups. The magnitude of this energy difference indicates that the localization of positive charge on C₈ is very substantial in the transition state for these migrations.7 A similar charge localization has been found for the circumambulatory rearrangements of the bicyclo[3.1.0] hexenyl cations.^{2,3}

In conclusion it is worth pointing out that the overall rearrangement of the hydroxyhomotropylium cations to protonated bicyclo[3.2.1] octadienones observed in this work has implications in terms of the energetic importance of homoaromaticity. The bicyclo[3.2.1] octadienyl cations have been considered to be "antibishomoaromatic" or at best nonaromatic cations²⁷ and yet in this work they are thermodynamically more stable than the hydroxyhomotropylium ions. We are currently examining the thermochemistry of these systems and will report on the results in a forthcoming paper.

Experimental Section

General. 1H NMR spectra were obtained on Varian HA-100 and EM-390 instruments and both ¹H and ¹³C NMR spectra with a Bruker WH90 instrument. Probe temperature was measured with a copper/constantan thermocouple or in the case of the EM-390 with a methanol sample. Spectral subtractions were carried out using the dual display overlay part of the Bruker FT NMR program. Proton chemical shifts in the acid solutions are referred to internal tetramethylammonium tetrafluoroborate taken as δ 3.10. UV and IR spectra were obtained using Cary 14 and Perkin-Elmer 283 instruments, respectively. Preparative GLC was performed on a Varian Aerograph A-90-P3 instrument fitted with either column A, 15% SE-30 on Chromosorb W, or column B, 15% Carbowax 20M on Chromosorb W. Protonation of the ketones in FSO₃H was achieved by adding cooled FSO₃H (\sim 0.7 mL) to the ketone (10-20 mg) in an NMR tube kept at -78 °C. Solution of the ketone was achieved by stirring the acid with a thin glass rod.

Rate Measurements. These were carried out by following the isomerizations by ¹H NMR spectroscopy. The temperature of the probe was measured before and after the kinetic run. In all cases except the isomerization of 13 to 29, the data were treated by a first-order kinetic treatment. For the 13 \rightarrow 29 reaction, the time-concentration plots were matched using the kinetics program ZAUBER written by D. P. Santry. ²⁶ A good estimate of the first-order decay of 13 was made on the basis of the available data and values of the other rate constants were varied until the calculated rate/concentration plot matched the experimental data.

Photoisomerizations were carried out using a Phillips SP 500-W superpressure mercury lamp using the apparatus previously described. ²⁸ A Corning glass filter CS 0-51 (4 mm) was used for all the photoreactions. The samples were contained in 5-mm NMR tubes and the course of the reactions was followed by ¹H NMR spectroscopy directly on the irradiated samples. The solutions were not degassed.

Photoisomerization of 10. 2,3-Homotropone (3, 15 mg), in FSO₃H (0.75 mL) was irradiated for 6 h at -70 °C. The ¹H NMR spectrum of the solution after the irradiation showed **10** (75%) and **19** (25%) to be present. The FSO₃H solution was added to a stirred slurry of methanol (15 mL) and NaHCO₃ (2 g) at -78 °C; the temperature of solution was allowed to rise to 0 °C when water (20 mL) was added. The solution was extracted with ether (3 × 15 mL), the extracts were washed with water (10 mL) and dried (K_2 CO₃), and the ether was evaporated through a short column. The ¹H NMR spectrum of the resulting oil showed **3** (80%) and **20** (20%) to be present.

Addition of Diazoethane to Tropone. A dried solution of diazoethane

in ether (30 mL) (prepared by reaction of N-ethyl-N-nitrosourea (3.1 g) with aqueous NaOH)²⁹ was added to tropone³⁰ (2.0 g) and kept at -10 °C for 3 days. The ether was removed to give an oil (2 g). ¹H NMR analysis of the oil showed that it contained 7 (60%) and 8methyl-2,3-homotropones 6 and 4. The oil was chromatographed on neutral alumina, activity 2, using petroleum ether (30-60 °C)/ether mixtures. Elution of the column with 1% ether/petroleum ether gave a yellow fraction which on evaporation of the solvent gave 7 (1H NMR, Table 1).14 Elution of the column with 5% ether/petroleum ether gave a second yellow fraction which yielded an oil on evaporation. Further purification of this second fraction was carried out using thick layer chromatography plates coated with silica gel (80-200 mesh). The plates were eluted with 5% ether/petroleum ether, the major yellow band was scraped off the plate, and the silica gel was extracted with ether. Evaporation of the ether and bulb-to-bulb distillation of the residue (100-120 °C, 8 mm) gave a yellow oil (150 mg) consisting of 6 (80-90%) and 4 (10-20%)

1,8,8- and 3,8,8-Trimethylbicyclo[5.1.0]octa-3,5-dien-2-ones (8 and 9). 2-Methylcycloheptatrienoneiron tricarbonyl (2.5 g), prepared by the reaction of 2-methylcycloheptatrienone³¹ with iron enacarbonyl, ¹⁵ in ether (50 mL) was treated with an ether solution of diazopropane prepared from acetone hydrazone (15 g).32 The reaction mixture was kept at 0 °C for 24 h. The ether was removed in vacuo to give a dark brown residue which was dissolved in toluene (50 mL) and refluxed for 20 min. The toluene was removed in vacuo and the residue chromatographed on neutral alumina (activity 2) eluting with a mixture of benzene (25%) in hexane (75%). The major orange band eluted was collected, and the solvent was evaporated in vacuo to give a thick oil (1 g) which was dissolved in anhydrous benzene (60 mL) and stirred for 18 h with anhydrous triethylamine N-oxide (2.5 g).³³ The mixture was filtered through Celite, the filtrate washed with water (3 × 25 mL) and dried over MgSO₄, and the solvent evaporated. The residue was chromatographed on neutral alumina (activity 2) eluting with 2% ether in petroleum ether. The first fraction gave on evaporation an oil which was distilled, bulb to bulb, 110-130 °C (10 mm), to give 8 as a yellow liquid (100 mg): IR (CS₂) 1642, 1615, 1394, 1378, 1336, 1199, 1078, 959, 873, 847, 793, 698 cm⁻¹; mass spectrum M⁺ 162.1029 (calcd M+ 162.1045).

The second fraction eluted from the column was $8 (\sim 70\%)$ plus $9 (\sim 30\%)$. This was purified by preparative GLC at 130 °C using column A to give 9 (retention time 20 min) as a yellow liquid, mass spectrum M⁺ 162.1034 (calcd M⁺ 162.1045).

8,8-Dimethylbicyclo[3.2.1]octa-3,6-dien-2-one (30). 8,8-Dimethylbicyclo[5.1.0]octa-3,5-dien-2-one (5, 0.5 g) dissolved in CH_2Cl_2 (3 mL) was added dropwise to FSO_3H (5 mL) which was stirred at -78 °C. The two-phase system was heated to 0 °C for 1.5 h, cooled to -78 °C, and added dropwise to rapidly stirred ice/water (100 mL) containing NaHCO₃ (15 g) kept at 0 °C. The resulting mixture was extracted with ether (3 × 20 mL), the ether extracts were combined and dried (MgSO₄), and the ether was removed by distillation to give an oily solid. Sublimation at 50 °C (10 mm) gave 30 as a pale yellow solid: mp 30–34 °C; 0.4 g; IR (film) 1680, 1370, 1303, 1260, 1234, 1160, 1113, 855 cm⁻¹. ¹³C NMR (ppm from Me₄Si): 21.4, 26.6 (CH₃); 52.6, 67.8 (bridgehead); 125.3, 132.0, 145.4, 156.7 (vinyl); 216.9 (carbonyl).

Anal. Calcd. for C₁₀H₁₂O: C, 81.04; H, 8.16. Found, C, 81.23; H, 8.11.

8,8-Dimethylbicyclo[5.1.0]octa-2,5-dien-4-one (33). 8,8-Dimethylbicyclo[5.1.0]octa-3,5-dien-2-one (5, 0.1 g) dissolved in CH_2Cl_2 (1 mL) was added to rapidly stirred FSO_3H (2 mL) at -78 °C. The two-phase system was warmed to -16 °C for 1 h, cooled to -78 °C, and added dropwise to a stirred slurry of sodium bicarbonate (6 g) in methanol (20 mL) at -78 °C. The methanol slurry was allowed to warm to 0 °C and water (35 mL) added. The ketones present were extracted with ether (3 × 20 mL), the ether solution was dried (MgSO₄), and solvent was evaporated to give a yellow oil (70 mg). Preparative GLC (column A) at 130 °C gave 30 (retention time 4.2 min), 5 (retention time 8.7 min), and 33 (retention time 9.8 min) in a ratio 12:72:16. 33 was a pale yellow oil, mass spectrum M+148.089 36 (calcd for $C_{10}H_{12}O$, 148.088 09).

8,8-Dimethylbicyclo[3.2.1]octan-2-one (31). 8,8-Dimethylbicyclo[3.2.0]octa-3,6-dien-2-one (30, 40 mg) in methanol (10 mL) was hydrogenated at room temperature and atomospheric pressure using 5% Pd/C catalyst (5 mg). The catalyst was removed by filtration through Celite and the methanol evaporated to give a pasty solid. Preparative GLC (column B) at 155 °C gave 31 (retention time 18

min), which was finally purified by sublimation at 100 °C (8 mm): yield of 31 25 mg; mp 133.5-134.5 °C25 (no depression on admixture with authentic material prepared below); IR (KBr) 1710, 1457, 1392, 1327, 1175 cm⁻¹, superimposable on 1R spectrum of authentic sample; ¹H NMR (CS₂) δ 0.91, 0.97 (each 3 H, s, CH₃) 1.5-2.3 (10 H,

7,7-Dimethylbicyclo[2.2.1]heptane-2,3-dione.³⁴ α -Fenchocamphorone³⁵ (4 g) in acetic anhydride (10 mL) was refluxed for 8 h with SeO_2 (4 g). Additional SeO_2 (2 × 1 g) was added after 3- and 6-h reflux. The reaction mixture was cooled and filtered and the filtrate neutralized with aqueous Na₂CO₃. Extraction of the resulting solution with CH_2Cl_2 (3 × 15 mL) gave a yellow solution which was washed with water (2 × 10 mL) and dried (MgSO₄). Removal of the solvent gave a yellow solid which was purified by sublimation (100 °C, 10 mm) to give the title compound (1.2 g); mp 133-134.5 °C; IR (KBr) 1775, 1745, 1453, 1300, 1209, 1070, 980, 911, 782 cm⁻¹; ¹H NMR (CS₂) 1.14, 1.07 (each 3 H, s, CH₃), 1.63, 2.12, 2.43 (each 2 H, m,

Anal. Calcd for C₉ H₁₂O₂; C, 71.02; H, 7.95. Found, C, 70.77; H,

4-Methoxy-8,8-dimethylbicyclo[3.2,1]oct-3-en-2-one.36 The above compound (0.4 g) in benzene (2 mL) and methanol (1 mL) was treated with diazomethane in benzene (prepared by treatment of N-methyl-N-nitrosourea (1 g)). The solution was kept at 0 °C for 3 h and allowed to warm up to room temperature overnight. The solvent was evaporated and the residue chromatographed on alumina (activity 11) eluting with 25% ether in petroleum ether to give an oil. This was distilled (bulb to bulb 125 °C, 10 mm) to give the title compound (0.32 g): IR (film) 1665, 1607, 1378, 1226, 1209, 990, 828 cm⁻¹; ¹H NMR (CS_2) δ 0.97, 1.06 (each 3 H, s, CH₃), 1.35-2.25 (6 H, m, ring H), 3.63 (3 H, s, OCH₃), 4.90 (1 H, s, vinyl H).

Anal. Calcd for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.03; H, 9.01

8,8-Dimethylbicyclo[3,2,1]oct-3-en-2-one. The previous compound (0.2~g) in anhydrous ether (4~mL) was added to LiAlH₄ (0.1~g) in ether (2 mL). The reaction mixture was stirred for 2.5 h at 25 °C and cooled to -10 °C and water (1.8 mL) and concentrated H_2SO_4 (1.8 mL) were added. The resulting mixture was stirred at -10 °C for 0.5 h, excess water was added (15 mL), and the organic materials were extracted into ether (2 × 10 mL). After the extract was dried (K_2CO_3) , the ether was removed to give an oily solid. This was shown by GLC to consist of two compounds, the desired enone being the major 85% component. Purification by preparative GLC (column B) at 155 °C gave the title compound (retention time 18 min): 120 mg; mp 107-108 °C; 1R (KBr) 1675, 1375, 1298, 1248, 1119, 840 cm⁻¹; ¹H NMR δ 0.94, 0.98 (each 3 H, s, CH₃), 1.47 (2 H, m), 2.18 (4 H, m), 5.72 (1 H, d, J = 10 Hz, C_3 H), 6.91 (1 H, dd, J = 10 and 7 Hz, C₄ H).

Anal. Calcd for C₁₀H₁₄O; C, 79.95; H, 9.39. Found, C, 79.58; H, 9.40.

8,8-Dimethylbicyclo[3.2.1]octan-2-one (Homoapocamphor, 31). The above enone (50 mg) in methanol (10 mL) was hydrogenated at room temperature and pressure using a 5% Pd/C catalyst. The solvent was evaporated after the catalyst had been removed by filtration through Celite. Purification was accomplished by preparative GLC (column B) at 155 °C to give 31 (25 mg), mp 133.5-134.5 °C, identical in all respects with the same material described above.

Rearrangement of 1,8,8-Trimethylbicyclo[5,1.0]octa-3,5-dien-2-one (14). Ketone 14 (100 mg) was dissolved in pentane (concentrated H₂SO₄ washed) (1 mL) and extracted in FSO₃H (1.5 mL) at -78 °C. The solution was warmed to 0 °C for 0.5 h, cooled to -78 °C, and poured into a rapidly stirred mixture of water (10 mL)/NaHCO $_3$ (3 g) at 0 °C. The product ketones were extracted into ether (3 \times 7.5 mL), the extracts were dried (K2CO3), and the ether was evaporated to give an oily solid (75 mg). Preparative GLC (column A) at 115 °C showed two compounds to be present in a ratio of 85:15 and these were collected and shown to be 37 and 38, respectively. 37: 1R (CS₂) 3028,

3022, 1680, 1369, 1347, 1308, 1262, 1217, 1163, 1072, 863, 799, 672, and 651 cm⁻¹; mass spectrum M⁺ 162.1035 (calcd for C₁₁H₁₄O, 162.1045). 38: 1R (CS₂) 3065, 3038, 1681, 1369, 1364, 1094, 1060, 846, 801, 728, 670, cm⁻¹; mass spectrum M⁺ 162.1036 (calcd for C₁₁H₁₄O, 162.1045).

Acknowledgment. We would like to thank Professor D. P. Santry for provision of the kinetic program ZAUBER prior to its publication, Mr. B. Sayer for the spectral subtraction work, and the National Science and Engineering Research Council of Canada for financial assistance.

Supplementary Material Available: Copies of spectra illustrating the photo- and thermal isomerization of 13 (2 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) Rosenberg, J. L.; Mahler, J. E.; Pettit, R. J. Am. Chem. Soc. 1962, 84, 2842. Winstein, S.; Kaesz, H. D.; Kreiter, C. G.; Friedrich, E. C. Ibid. 1965, 87, 3267. Warner, P.; Harris, D. L.; Bradley, C. H.; Winstein S. Tetrahedron Lett. 1970, 4013. Haddon, R. C. Tetrahedron Lett. 1975, 863. For reviews see: Winstein, S. Q. Rev., Chem. Soc. 1969, 23, 141. Warner, P. M. In " in Nonbenzenoid Aromatic Chemistry", Nozoe, T., Breslow, R., Hafner, K., Ito, S., Murata, I., Eds.; Hirokawa: Tokyo, 1976; Vol. 2. Paquette, L. A.
- Angew. Chem., Int. Ed. Engl. 1978, 17, 106. (2) (a) Swatton, D. W.; Hart, H. J. Am. Chem. Soc. 1967, 89, 5075. Childs, R. F.; Winstein, S. Ibid. 1974, 96, 6409. Isaev, I. S.; Mamatyuk, V. I.; Kuzubova, .. I.; Gordymova, T. A.; Koptyug, V. A. Zh. Org. Khim. 1970, 6, 2482. (b) Vogel, P.; Saunders, M.; Hasty, Jr., N. M.; Berson, J. A. *J. Am. Chem. Soc.* **1971**, *93*, 1551. Childs, R. F.; Zeya, M. *J. Am. Chem. Soc.* **1974**, *96*, 6418.
- Berson, J. A.; Jenkins, J. A. J. Am. Chem. Soc. 1972, 94, 8907
- Hehre, W. J. J. Am. Chem. Soc. 1974, 96, 5207; 1972, 94, 8908.
- (6) Childs, R. F.; Rogerson, C. V. J. Am. Chem. Soc. 1976, 98, 6391.
- (7) Scott, L. T.; Brunsvold, W. R. *J. Am. Chem. Soc.* **1978**, *100*, 6535. (8) Woodward, R. B.; Hoffmann, R. "The Conservation of Orbital Symmetry"; Academic Press: New York, 1969.
- (9) Rice, F. O.; Teller, E. J. Chem. Phys. 1938, 6, 489. Miller, S. I. Adv. Phys. Org. Chem. 1968, 6, 185. Hine, J. Ibid. 1977, 15.
 (10) Jorgenson, W. L. J. Am. Chem. Soc. 1976, 98, 6784.
- (11) Hogeveen, H.; Gaasbeek, C. J. Recl. Trav. Chim. Pays-Bas 1970, 89, 1079. Sorensen, T. S. Can. J. Chem. 1974, 52, 3424
- (12) Holmes, J. D.; Pettit, R. J. Am. Chem. Soc. 1963, 85, 2531.
 (13) Franck-Neumann, M.; Martina, D. Tetrahedron Lett. 1975, 1759.
- (14) Franck-Neumann, M. Tetrahedron Lett. 1970, 2143. Luskus, L. J.; Houk, K. N. Ibid. 1972, 1925.

- (15) Eisenstadt, E. J. Organomet. Chem. 1975, 97, 443.
 (16) Haddon, R. C. J. Am. Chem. Soc. 1979, 101, 1722.
 (17) Schrauzer, G. N. J. Am. Chem. Soc. 1961, 83, 2966. Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 4821
- (18) Childs, R. F.; Varadarajan, A. J. Organomet. Chem. 1980, 184, C28.
- (19) Sample spectra are available as supplementary material.(20) Brookhart, M.; Ogliaruso, M.; Winstein, S. J. Am. Chem. Soc. 1967, 89,
- (21) Brookhart, M. S.; Atwater, M. A. M. Tetrahedron Lett. 1972, 4399.
- (22) Gasteiger, J.; Huisgen, R. Tetrahedron Lett. 1972, 3665. Huisgen, R.; Gasteiger, J. Ibid. 1972, 3661. Paquette, L. A.; Jacobsson, U.; Ley, S. V. J. Am. Chem. Soc. 1976, 98, 152.
- Paquette, L. A.; Cox, O. J. Am. Chem. Soc. 1967, 89, 5633.
- (24) Winstein, S.; Kreiter, C. G.; Brauman, J. I. J. Am. Chem. Soc. 1966, 88,
- (25) Komppa, G.; Bergström, A. Chem. Ber. 1942, 75, 1607.
- (26) The program used was ZAUBER, an unpublished program written by D. P. Santry of this department.
- (27) Hart, H.; Kuzuya, M. *J. Am. Chem. Soc.* 1976, *98*, 1545, 1551. Diaz, A. F.; Sakai, M.; Winstein, S. *Ibid.* 1970, *92*, 7477.
 (28) Childs, R. F.; Sakai, M.; Parrington, B. D.; Winstein, S. *J. Am. Chem. Soc.*
- 1974, 96, 6403.
- (29) Marshall, J. A.; Partridge, J. J. J. Org. Chem. 1968, 33, 4090.
 (30) Radlick, P. J. Org. Chem. 1964, 29, 960.
 (31) Brady, W. T.; Hieble, J. P. Tetrahedron Lett. 1970, 3205.

- (32) Andrews, S. D.; Day, A. C.; Raymond, P.; Whiting, M. C. Org. Synth. 1970, 50, 27.
- (33) Franzen, V. "Organic Syntheses", Collect. Vol. V; Wiley: New York, 1973;
- (34) Evans, W. C.; Ridgion, J. M.; Simonsen, J. L. J. Chem. Soc. 1934, 137. Rupe, H.; Tommasi di Vigano, A. *Helv. Chim. Acta* **1937**, *20*, 1078. (35) Hückel, W.; Volkmann, D. *Justus Liebigs Ann. Chem.* **1963**, *664*, 31
- (36) Favre, H.; Marinier, B.; Richer, J-C. Can. J. Chem. 1956, 34, 1329. Rupe, H.; Frey, C. Helv. Chim. Acta 1944, 27, 627.